SSF' **Best Practices for Improving Value in Shopping Centers**

returns

investment

STRATEGY market share "SUSTAINAB

25

Σ

SC

Jatior

Q

edevelopment

September 23 – 24, 2013 • JW Marriott • Washington, DC

Solar Deployment Considerations and Case Study

Eric C. Buckner Senior Director, Energy General Growth Properties

Solar Deployment Considerations

Provider Considerations:

- Geography New Jersey, Hawaii, California, Arizona, Massachusetts, Connecticut.
- Geography coupled with government incentives.
- Roof less than 5 years old.
- Visibility into likely HVAC changes, roofing upgrades, etc.
- No major shading / obstructions nearby.
- Close proximity to mall electricity meters.

Solar Deployment Considerations

Landlord Considerations / Obstacles / PPA:

- Typical term of 15-20 years versus 5-7 year preference of most owners.
 - Removal and possible relocation of system.
 - Financial protection from new technology, better deal offers.
 - Physical considerations; How roof to be used.
- Timing Providers often rushed to get approvals to reserve higher state rebates

Solar Deployment Economic Considerations:

- State / Local financial incentives, aka SRECs and their associated value and projected value.
- Interconnection requirements & utility approvals.
- Annual energy consumption (load).
- Annual average & maximum energy demand.
- Load profile (hourly energy use patterns).
- Available utility rate tariffs.
- Current low cost of grid electricity makes solar difficult / non-competitive.

Solar Deployment Physical Considerations:

- Roof / land orientation.
- Roof height.
- Roof warranty / remaining life.
- Roof capacity to accept additional weight load.
- Ability to obtain easements to prevent shading of system.
- Local wind exposure.
- Solar irradiance (insolation).
- **Distance to point of interconnection.**
- Interconnection voltage.
- Transmission line congestion.
- Local permitting authority.
- Environmental permitting considerations.
- Net metering & interconnection laws.
- Geotechnical / Structural characteristics
- Timeline

Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

Solar Deployment – Ownership Structures &Subsidies:

- REITs cannot use tax incentives; must have a TRS (taxable REIT subsidiary)
- PPA (power purchase agreement) structure may be an option.

<u>SUBSIDIES</u>

- Federal ITC
- Federal Accelerated Depreciation
- State incentives / SRECs
- PACE Financing

New Jersey Case Study:

- 30% Federal cash grant; PSE&G special loan program. No program without these subsidies.
- Bridgewater Commons (rooftop and parking deck), Paramus Park, Willowbrook Shopping Center, Woodbridge Center.
- Solar panels operational beginning late summer 2012.
- Projected to displace 6,125,000 kWh of common area electrical load; roughly 12% of total load of the 4 sites in aggregate.
- Assuming a hypothetical PSE&G rate of \$0.15 per kWh, this offsets \$918,760 of electricity cost.

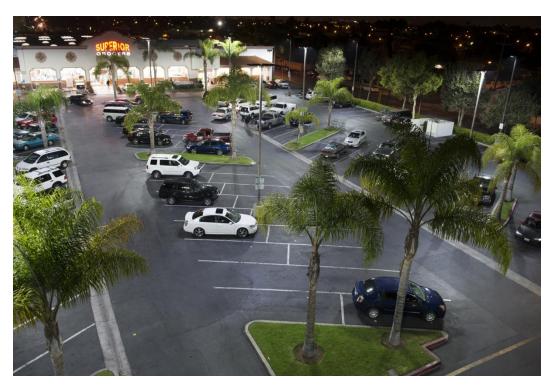
LED Parking Lot Retrofits Case Study

Mark Peternell VP Sustainability Regency Centers

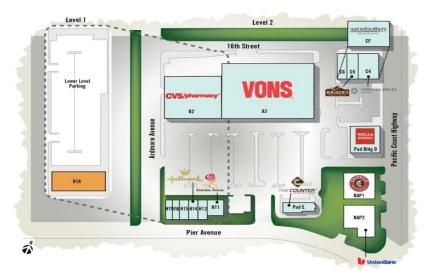
Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

Regency[®] Centers.

Preeminent national owner, operator and developer of neighborhood and community shopping centers


- Headquarters in Jacksonville, FL
- Publicly trader REIT \$4.39B Market Cap
- 343 centers totaling 46M square feet
- Market dominant anchors 85% grocery

Case Study: LED Parking Lot Retrofits



- Proven technology with significant benefits: improve lighting quality, significantly reduce energy & maintenance expenses, dimmability, long life, higher utility rebates
- Installed at 8 properties; 12 by end of 2013

Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

<u>Plaza Hermosa – Hermosa Beach, CA</u>

- 94,716 SF neighborhood center located in densely populated area
- Aging center, but 100% occupancy with very high volume
- Retrofit 400w HPS to 172w LED
- Factors in decision to retrofit:
 - A+ center in strategic market
 - Poor color quality and significant lumen depreciation
 - High electricity rates
 - Expensive to maintain
 - SCE utility rebate
 - Increase nighttime curb appeal

Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

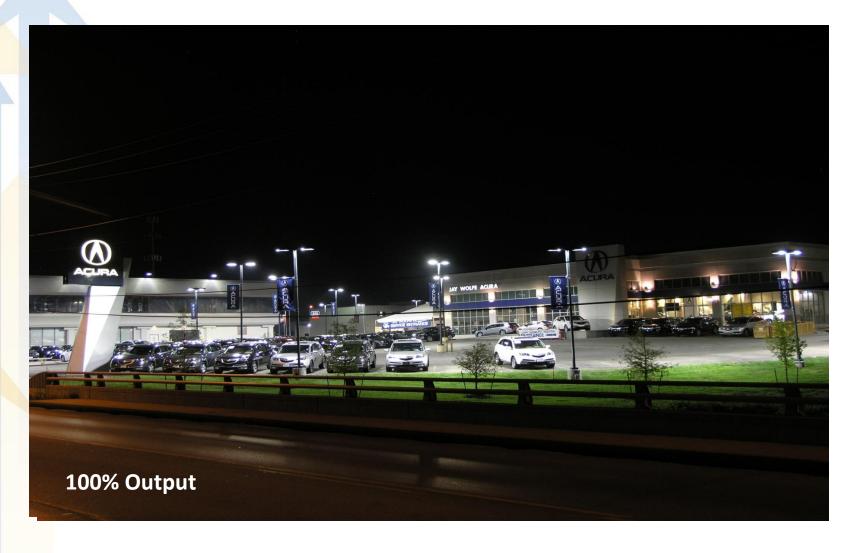
<u>Plaza Hermosa – Technological Differences</u>

	HPS - Existing	<u>LED - New</u>	
	D - D		
Watts	464	172	
Lumens	45000	12784	
Avg. FC	4.2	2.5	
Max-to-Min Ratio	51	7	
Correlated Color Temperature	2100K	5700K	
Color Rendering Index	20	70+	
Lumen Maintenance Factor	0.7	0.92	
Lamp Life Rating / L70	30,000	100,000+	
Warm-Up Time	8 mins	Instant	
Dimmable	No	0 - 10v	
Warranty	1 - 2 years	10 years	

Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

<u>Plaza Hermosa – Hermosa Beach, CA</u>

	Annual Electricity	Annual Cost	Annual Savings	<u>% Savings</u>
Existing Conditions	115,842 kwh	\$16,218	-	
LED	45,955 kwh	\$6,434	\$9,784	60%
LED w. Dimming	23,743 kwh	\$3,324	\$12,894	79%


Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

<u>Plaza Hermosa – Financial Considerations</u>

- Costs \$89,450
- Savings \$15,074
 - Energy \$12,894
 - Maintenance \$2,180
- Rebate \$7,368 (miscellaneous income)
- Simple Payback 5.4 Years
 - Typical range 3.5 6 years
- Ignores intangible value of aesthetic improvements

Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

Dimmability

Take-Aways

- LED lighting is a viable technology for retail parking lots
 - Need to consider life cycle costs
 - Don't underestimate the visual benefits
 - Pay more attention to uniformity than foot-candles
- Use high quality LED luminaires
 - Must publish reliability data and be DLC qualified (<u>http://www.designlights.org/</u>)
 - Use reputable manufactures with 5 10 yr. warranty
 - Be cautious of retrofits and fixtures designed for conventional sources that have been modified to for LED
- Manufacturer and Service Provider Recommendations

Parking Lot Lighting Controls Case Study

Will Teichman Director of Sustainability Kimco Realty Corporation

Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

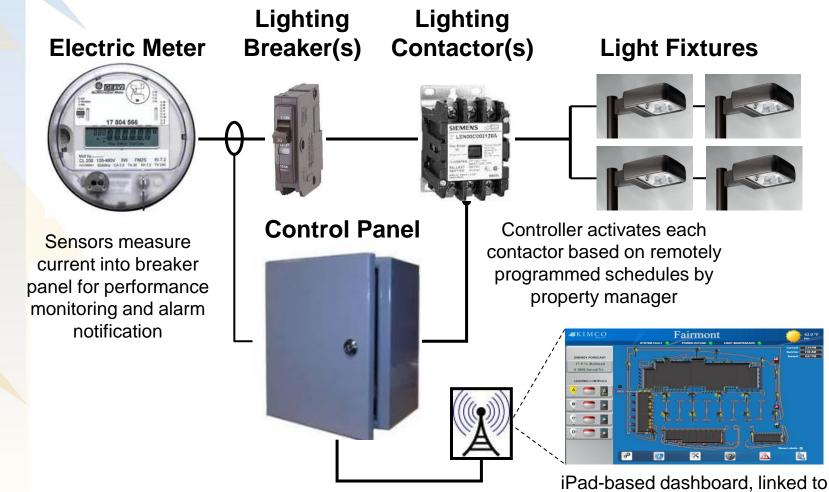
Case Study: Kimco Lighting Controls Program

- Portfolio approach to improved management of exterior parking lot lighting at open-air shopping centers
- Installed at 250 properties, with 85 additional in progress
- Significant reductions in cost, improved environmental performance, and enhanced management capabilities

The Case for Improved Lighting Controls

Traditional Controllers

- Low cost and easy to install
- Manually adjusted, in-person
- Subject to failure, with no warning or notification provided
- Relative imprecision can lead to un-necessary burn times

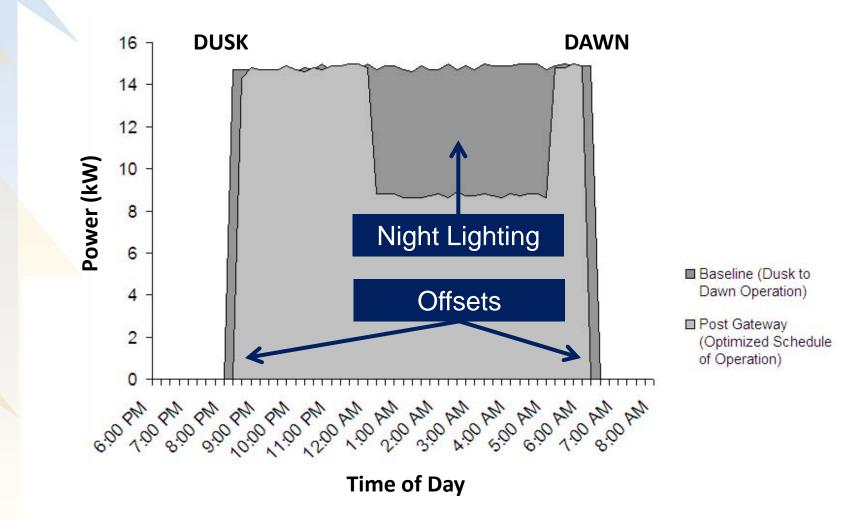

Advanced Controllers

- Higher price point + ongoing fees
- Internet-connected, with remote monitoring and control capability
- Alarming functionality to notify of power outage, use anomalies, etc.
- Improved precision = reduced burn times and cost savings

Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

Kimco's "Gateway" System Configuration

the site via cellular connection


Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

Financial Considerations – Typical Site

- One-time Installation Cost: \$2,000-5,000 per house lighting panel under control
- Monthly Cellular/Monitoring Fees: \$50-\$200 per property
- Typical Annual Energy Savings: 10-20% of lighting systems brought under control
- **Payback**: 1-4 years, largely driven by:
 - Total number of panels / circuits
 - Total electric spend (consumption * rate)
 - Accuracy of current control regime
 - Capability for "night lighting", adaptive daily schedules, etc.

Best Practices for Improving Value in Shopping Centers September 23 – 24, 2013 • JW Marriott • Washington, DC

Energy Savings Through Improved Control

Summary Points

- Advanced lighting controls can deliver the following benefits over traditional controls:
 - Improved reliability, and confidence that lights are on when they should be (and...off when they shouldn't)
 - Potential for energy and cost savings
 - Enhanced Property Manager effectiveness (remote schedule changes, alarms, notifications, etc.)
- Maximizing energy savings requires dusk & dawn offsets, night lighting, and adaptive daily schedules
- Payback analysis omits capex/opex recovery considerations, and availability of utility incentives